Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition.

نویسندگان

  • X Fang
  • T L Kaduce
  • N L Weintraub
  • S Harmon
  • L M Teesch
  • C Morisseau
  • D A Thompson
  • B D Hammock
  • A A Spector
چکیده

Epoxyeicosatrienoic acids (EETs) are products of cytochrome P-450 epoxygenase that possess important vasodilating and anti-inflammatory properties. EETs are converted to the corresponding dihydroxyeicosatrienoic acid (DHET) by soluble epoxide hydrolase (sEH) in mammalian tissues, and inhibition of sEH has been proposed as a novel approach for the treatment of hypertension. We observed that sEH is present in porcine coronary endothelial cells (PCEC), and we found that low concentrations of N,N'-dicyclohexylurea (DCU), a selective sEH inhibitor, have profound effects on EET metabolism in PCEC cultures. Treatment with 3 microM DCU reduced cellular conversion of 14,15-EET to 14,15-DHET by 3-fold after 4 h of incubation, with a concomitant increase in the formation of the novel beta-oxidation products 10,11-epoxy-16:2 and 8,9-epoxy-14:1. DCU also markedly enhanced the incorporation of 14,15-EET and its metabolites into PCEC lipids. The most abundant product in DCU-treated cells was 16,17-epoxy-22:3, the elongation product of 14,15-EET. Another novel metabolite, 14,15-epoxy-20:2, was present in DCU-treated cells. DCU also caused a 4-fold increase in release of 14,15-EET when the cells were stimulated with a calcium ionophore. Furthermore, DCU decreased the conversion of [3H]11,12-EET to 11,12-DHET, increased 11,12-EET retention in PCEC lipids, and produced an accumulation of the partial beta-oxidation product 7,8-epoxy-16:2 in the medium. These findings suggest that in addition to being metabolized by sEH, EETs are substrates for beta-oxidation and chain elongation in endothelial cells and that there is considerable interaction among the three pathways. The modulation of EET metabolism by DCU provides novel insight into the mechanisms by which pharmacological or molecular inhibition of sEH effectively treats hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-Inflammatory Effects of Epoxyeicosatrienoic Acids

Epoxyeicosatrienoic acids (EETs) are generated by the activity of both selective and also more general cytochrome p450 (CYP) enzymes on arachidonic acid and inactivated largely by soluble epoxide hydrolase (sEH), which converts them to their corresponding dihydroxyeicosatrienoic acids (DHETs). EETs have been shown to have a diverse range of effects on the vasculature including relaxation of vas...

متن کامل

Soluble epoxide hydrolase: sex differences and role in endothelial cell survival.

OBJECTIVE Sex differences in cerebral ischemic injury are, in part, attributable to the differences in cerebrovascular perfusion. We determined whether the brain microvascular endothelial cells (ECs) isolated from the female brain are more resistant to ischemic injury compared with male ECs, and whether the difference is attributable to lower expression of soluble epoxide hydrolase and higher l...

متن کامل

Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels.

We investigated the effects of soluble epoxide hydrolase (sEH) inhibition on epoxyeicosatrienoic acid (EET) metabolism in intact human blood vessels, including the human saphenous vein (HSV), coronary artery (HCA), and aorta (HA). When HSV segments were perfused with 2 micromol/l 14,15-[3H]EET for 4 h, >60% of radioactivity in the perfusion medium was converted to 14,15-dihydroxyeicosatrienoic ...

متن کامل

Soluble Epoxide Hydrolase Activity Determines the Severity of Ischemia-Reperfusion Injury in Kidney

Soluble epoxide hydrolase (sEH) in endothelial cells determines the plasma concentrations of epoxyeicosatrienoic acids (EETs), which may act as vasoactive agents to control vascular tone. We hypothesized that the regulation of sEH activity may have a therapeutic value in preventing acute kidney injury by controlling the concentration of EETs. In this study, we therefore induced ischemia-reperfu...

متن کامل

Active maintenance of endothelial cells prevents kidney fibrosis

Background Soluble epoxide hydrolase (sEH) expressed by endothelial cells catalyzes the metabolism of epoxyeicosatrienoic acids (EETs), which are vasoactive agents. Methods We used a unilateral ureteral obstruction mouse model of kidney fibrosis to determine whether inhibition of sEH activity reduces fibrosis, the final common pathway for chronic kidney disease. Results sEH activity was inh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 18  شماره 

صفحات  -

تاریخ انتشار 2001